Discontinuities in Mathematical Modelling: Origin, Detection and Resolution
نویسنده
چکیده
When modelling a chemical process, a modeller is usually required to handle a wide variations in time and/or length scales of its underlying differential equations by eliminating either the faster or slower dynamics. When compelled to deal with both and simultaneously simplify model structure, he/she is sometimes forced to make decisions that render the resulting model discontinuous. Discontinuities between adjacent regions, described by different equation sets, cause difficulties for ODE solvers. Two types exist for handling discontinuities in ODEs. Type I handles a discontinuity from the ODE solver side without paying any attention to the ODE model. This resolution to discontinuities suffer from underestimating the proper location of the discontinuity and thus results in solution errors. Type II discontinuity handlers resolve discontinuities at the model level by altering model structure or introducing bridging functions. This type of discontinuity handling has not been thoroughly explored in literature. I present a new hybrid (Type I and Type II) algorithm that eliminates integrator discontinuities through two steps. First, it determines the optimum switch point between two functions spanning adjacent or overlapping domains. The optimum switch point is determined by searching for a “jump point” that minimizes a discontinuity between adjacent/overlapping functions. Two resolution approaches exist. Approach I covers the entire overlap domain with an interpolating polynomial. Approach II relies on a moving vector to track a function trajectory during simulation run. Then, the discontinuity is resolved using an interpolating polynomial that joins the two discontinuous functions within a fraction of the overlap domain. The developed algorithm is successfully tested in models of a steady state chemical reactor exhibiting a bivariate discontinuity and a dynamic Pressure Swing Adsorption Unit exhibiting a univariate discontinuity in boundary conditions. Simulation results demonstrated a substantial increase in models' accuracy with a reduction in simulation runtime.
منابع مشابه
A total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملA New Five-Parameter Distribution: Properties and Applications
In this paper, a new five-parameter lifetime and reliability distribution named “the exponentiated Uniform-Pareto distribution (EU-PD),” has been suggested that it has a bathtub-shaped and inverse bathtub-shape for modeling lifetime data. This distribution has applications in economics, actuarial modelling, reliability modeling, lifetime and biological sciences. Firstly, the mathematical and st...
متن کاملRESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE
In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...
متن کاملSensitivity Analysis of Stress and Cracking in Rock Mass Blasting using Numerical Modelling
Drilling and blasting have numerous applications in the civil and mining engineering. Due to the two major components of rock masses, namely the intact rock matrix and the discontinuities, their behavior is a complicated process to be analyzed. The purpose of this work is to investigate the effects of the geomechanical and geometrical parameters of rock and discontinuities on the rock mass blas...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کامل